Technical & Report Guidelines

1. Technical considerations for the determination of IGHV somatic hypermutation status in clonotypic IGHV-IGHD-IGHJ gene

rearrangements in CLL.

Abbreviations: EDTA: ethylenediaminetetraacetic acid; CPT: citrate/pyridoxal 5'-phosphate/Tris; gDNA: genomic DNA; cDNA: complementary DNA; PAGE: polyacrylamide gel electrophoresis.

Item	Recommendations	Remarks		
Material				
Anticoagulants	EDTA (or CPT)			
Cells / Tissue	Blood, bone marrow, tissue biopsy	Purification of B cells usually not necessary		
		unless low number of leukemic cells.		
Nucleic acid	gDNA or cDNA	cDNA useful when mutations on the IGHJ gene		
		impair amplification.		
Production of template for sequencing				
Primers ^a		5': VH FR1 primers acceptable only if Leader		
		primers fail; VH FR2 and VH FR3 primers not		
	5': Leader	acceptable.		
	3': IGHJ or IGHC	3': IGHJ or IGHC IGHC primers (on cDNA)		
		useful when mutations on IGHJ gene impair		
		amplification.		
Amplification		Parallel simplex (for each 5' primer) PCR may		
	multiplex PCR	be useful when more than one rearrangement		
		is present.		

Detection of IGH rearrangement	GeneScan or PAGE electrophoresis	Agarose gel electrophoresis strongly discouraged (lack of resolution).		
Next generation sequencing	not necessary	Except in rare circumstances when all other approaches fail (alternative sets of primers, utilization of both gDNA and cDNA, processing of a new sample).		
Sequencing				
Methodology	direct, both strands	Sequencing of both strands is mandatory for the generation of a single, high quality IGH gene rearrangement sequence.		
Sequence alignment	IMGT/V-QUEST (https://www.imgt.org/IMGT_vquest/input)	Adjustable parameter: (i) search for insertions/deletions.		
IGHV identity (%)	automatic or adjusted	Adjusted: use option "search for insertions/deletions" when low % identity.		
Assignment to stereotyped subsets #2 and #8	IMGT/V-QUEST (<u>https://www.imgt.org/IMGT_vquest/input</u>) ARResT/AssignSubsets (<u>http://bat.infspire.org/arrest/assignsubsets/</u>)	IMGT/V-QUEST: Advanced functionalities, Clinical application: search for CLL subsets #2 and #8.		

^a Leader primers are the only recommended option. That said, in rare cases when the application of a multiplex PCR with leader primers is unsuccessful VH FR1 primers can be used. The result should only be used to facilitate the application of a new round of PCR using IGHV subgroupspecific leader primers. Only if the result is suboptimal again, the report can be based on the VH FR1 PCR but it should be clearly stated that the use of VH FR1 primers might underestimate the total number of IGHV somatic hypermutations since a part of the VH domain is missing.

2. Reporting IGHV gene somatic hypermutation status in CLL.

Recommendations for the assessment of the somatic hypermutation status of the IGHV gene in clonotypic IGHV-IGHD-IGHJ gene rearrangements for standard (A) and difficult (B) cases in CLL.

CLL chronic lymphocytic leukemia, IG immunoglobulin, M-CLL mutated CLL, U-CLL unmutated CLL.

A. STANDARD CASES		
Item	Recommendations	
	Report type of: primers, PCR product analysis, sequencing method,	
1. Methodology	bioinformatics tools for SHM status assessment, and stereotypy	
	analysis.	
2. IGH gene and allele identification	IGHV, IGHD ^b , IGHJ genes and alleles.	
	SHM status determined only for productive rearrangements; if the	
3. Functionality	rearrangement is unproductive, mention reasons for that (e.g., IG	
	pseudogene, out-of-frame junction, stop codon, large indel).	
4. IGHV gene: % of nucleotide identity to the germline to 2 decimal	Classification: U-CLL \geq 98%; M-CLL < 98%; borderline CLL when 97-	
points as reported by IMGT	97.99%.	
	For subsets with well-established prognostic value (currently, subsets	
5. Subset identification/BcR IG stereotypy	#2 and #8).	

^b In a percentage of cases, IGHD identification may be difficult due to: (i) excessive exonuclease trimming of the IGHD gene; and/or (ii) SHM within the VH CDR3, hindering the assignment to the closest germline IGHD gene and allele.

B. CHALLENGING CASES			
Item	Recommendations		
	Repeat the PCR with alternative primer sets and using cDNA. Perform		
	NGS to get more detailed information regarding the clonal		
1. Single unproductive rearrangement	architecture.		
	SHM status disclosed as not determined only in case all different		
	approaches fail.		
2. Double rearrangements			
	Same as for standard cases: mutational status defined by the		
2.1 One productive and one non-productive	productive rearrangement, irrespective of the SHM status of the		
	unproductive rearrangement.		
2.2 Double productive			
2.2.1 Concordant SHM status	Same as for standard cases i.e., consider as M-CLL or U-CLL, according		
	to the SHM status.		
	Check immunophenotype for the presence of 2 clonal populations.		
2.2.2 Discordant SHM status	Recommend to the physician that it is safer to consider as U-CLL; close		
	follow-up.		
	Check immunophenotype for the presence of 2 or more clonal		
	populations.		
3. Multiple (>2) productive rearrangements	Perform NGS to assess the relative frequency of each clonotype and		
	consider the predominant clonotype, if it is clearly identified (NOTE:		
	specific guidelines are still to be provided/developed here).		
4 Missing anchors (C104/W118)	Mutational status assessment is possible if evidence for IG expression		
	on leukemic cells and/or preserved G-X-G motif within the VH FR4.		