
ERIC guidelines for MRD assessment in CLL 2021

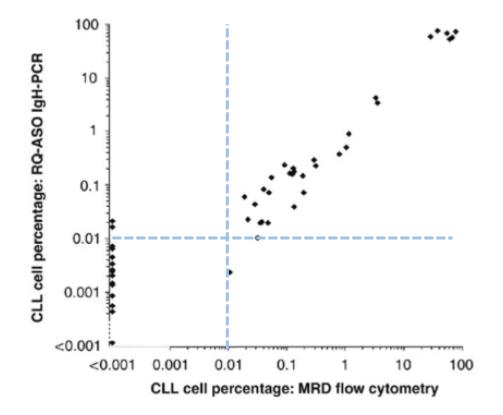
Survey to identify key areas to obtain evidence and/or consensus for MRD assessment guidelines

- 1) Cellular analysis: technical questions
- 2) Cellular analysis: operational questions
- 3) MRD assessment: general topics

1475 members from 82 countries

Development of the ERIC CLL MRD panel

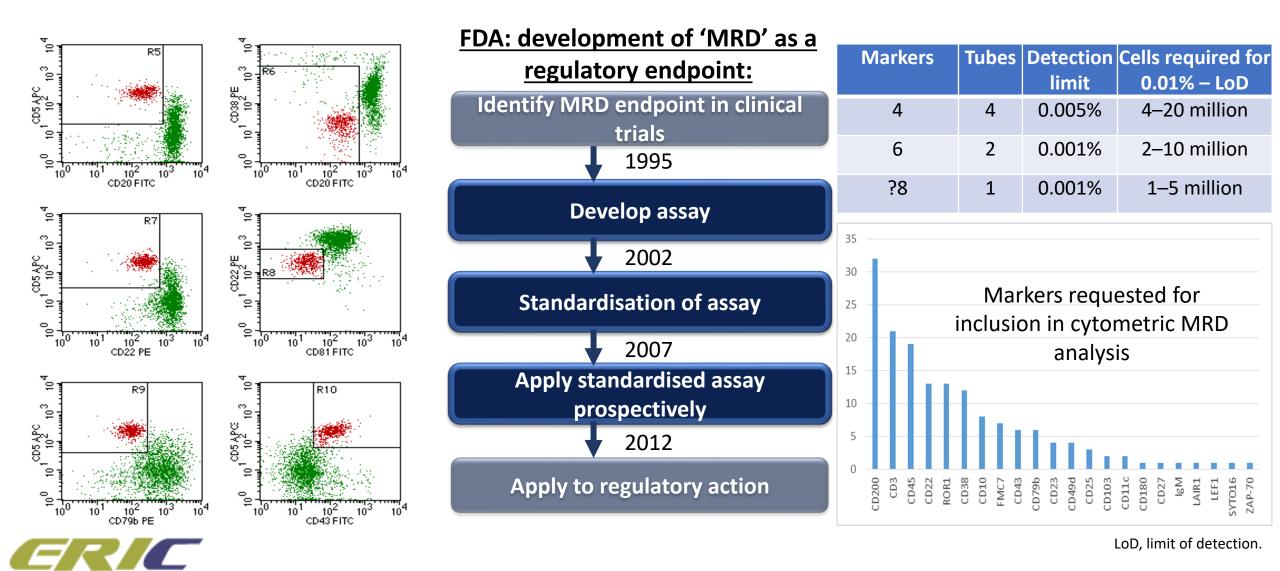
Tested 35 markers reported to be differentially expressed in CLL vs. normal B-cells in 50 configurations


Identified the 3 combinations with the lowest false-positive rate and highest reproducibility

Consensus 5-tube 4-marker panel

FITC	PE	PerCPCy5.5	APC	Aim
kappa	lambda	CD19	CD5	Clonal assessment
CD45	CD14	CD19	CD3	Limit of detection
CD20	CD38	CD19	CD5	CLL quantification
CD81	CD22	CD19	CD5	CLL quantification
CD79b	CD43	CD19	CD5	CLL quantification

european research initiative on CLL


Confirmed concordance and linearity with IGHV qPCR at the 0.01% threshold

International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia

AC Rawstron¹, N Villamor^{2,3}, M Ritgen⁴, S Böttcher⁴, P Ghia⁵, JL Zehnder⁶, G Lozanski⁷, D Colomer^{2,3}, C Moreno^{2,3}, M Geuna⁸, PAS Evans¹, Y Natkunam⁶, SE Coutre⁶, ED Avery⁹, LZ Rassenti⁹, TJ Kipps⁹, F Caligaris-Cappio⁵, M Kneba⁴, JC Byrd⁷, MJ Hallek¹⁰, E Montserrat^{2,3} and P Hillmen¹

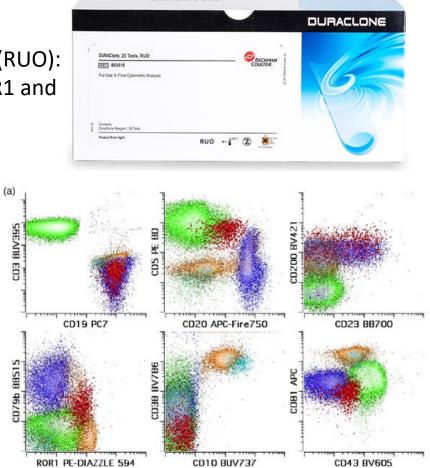
Development of the ERIC CLL MRD panel

Rawstron AC, et al. Leukemia 2016; 30:929-936; Rawstron AC, et al. Leukemia 2013; 27:142–149;

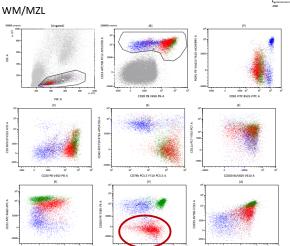
european research initiative on CLL

ERIC standard for Flow Cytometry MRD Detection: can be adapted with additional markers

Requires ≥6 markers to achieve 0.01% – available	Antigen	Typical expression	Control por normal perip		Minimum relative	Examples of MRD analysis in patients
to most labs Can achieve 0.001%		(% positive vs control)	Positive	Negative	fluorescence intensity (preferred)	BB-161-18
The core panel must meet these 6	CD5	Positive (>20%)	CD3+ T-cells	CD19+ B-cells	>30 (>65)	PB*
specifications, but is flexible thereafter	CD20	Weak	CD19+ B-cells	CD3+ T-cells	>10 (>20)	-304 0 10 ³ 10 ³ -40 0 10 ³
	CD43	Positive (>20%)	CD3+ T-cells	CD20+ B-cells	>15 (>40)	Figure 1 Second Second
Backwards- compatible and applicable to	CD79b	Weak	CD20+ B-cells	CD3+ T-cells	>15 (>30)	
current treatments	CD81	Weak	CD3+ T-cells	Granulo- cytes	>12 (>20)	



Rawstron AC, et al. Leukemia 2016; **30**:929-936; Rawstron AC, et al. Leukemia 2013; **27**:142–149; Rawstron AC, et al. Leukemia 2007; **21**:956–964.


Building on the ERIC MRD panel for future applications

Commercial kits (RUO): ERIC panel + ROR1 and CD45

Goshaw JM, Gao Q, Wardrope J, Dogan A, Roshal M. 14-Color single tube for flow cytometric characterization of CD5+ B-LPDs and high sensitivity automated minimal residual disease quantitation of CLL/SLL. Cytometry B Clin Cytom. 2020 Sep 8. doi: 10.1002/cyto.b.21953.

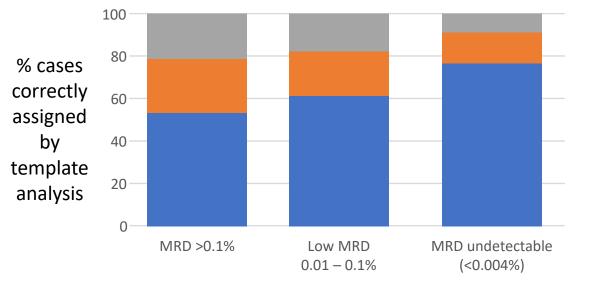
HMDS Leeds approach 16+ marker panel built around the core ERIC marker panel to apply to all CD5+ and post-GC B-cell disorders.

Normal mature B-cells

Neoplastic B-cells

Should additional markers be added to the core panel? If they are "required", experimental evidence of benefit will be needed

1) Cellular analysis: technical questions


	Yes	Νο	Not sure
1A) The core marker panel should be updated			

Free text comment:

1B) ROR1

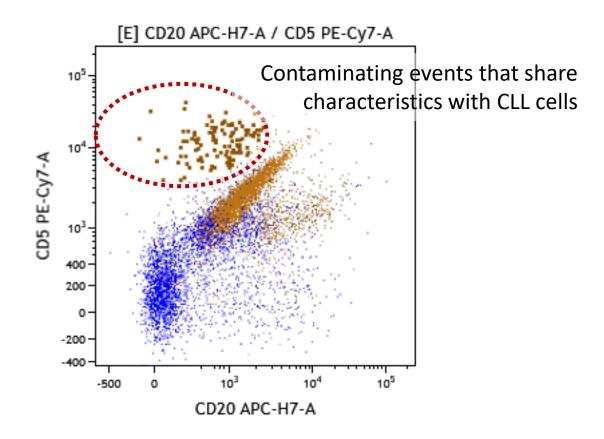
• ROR1

- Expressed in nearly all CLL and Burkitt lymphoma, some mantle cell and B-ALL. No expression on normal circulating leucocytes, but is detectable on a subset of B-progenitors.
- ? Required or recommended
 - Facilitates analysis for less experienced operators
 - Improves automated analysis
 - Increases proportion of "atypical" cases that can be monitored

Automatic (template) CLL MRD analysis

Automatic (All markers typical)

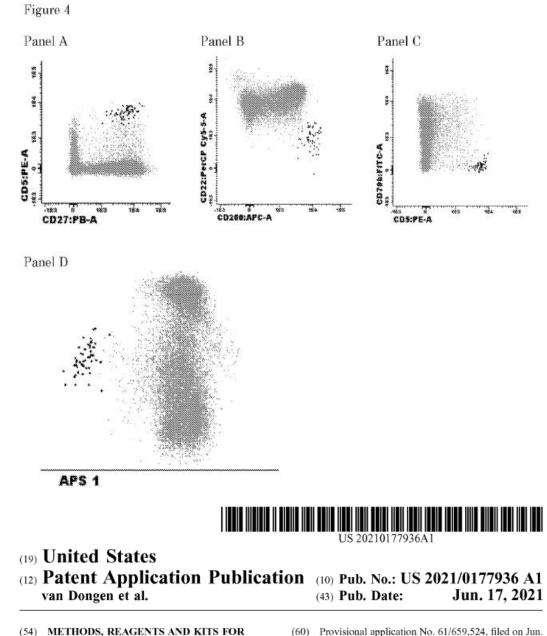
Automatic (ROR1 aids gating)


Manual analysis required

1C) CD3

• CD3

- Low level CD3+CD19+ events can affect MRD analysis of disease near the assay detection limit
- Less informative in assays incorporating CD81, CD200, or ROR1
- ? Required or recommended
 - Currently recommended in cases with disease levels near the assay detection limit


CD19+SSClo events (no additional gating) with CD19+SSCloCD3+ events highlighted in brown

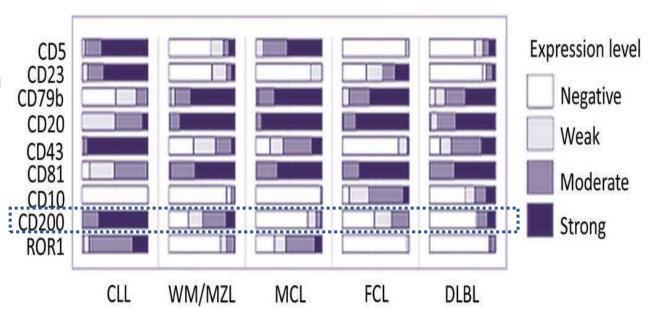
1D) CD27

• CD27

- Expressed on most CLL cases (variable level) and memory B-cells
- In the Euroflow patent for CLL MRD
- One of the markers tested in the 2007 **ERIC** consensus
- ? Required or recommended

(60)

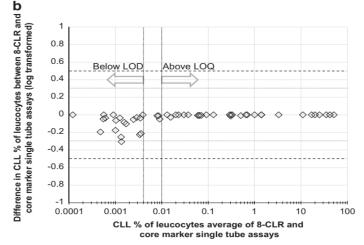
14, 2012.

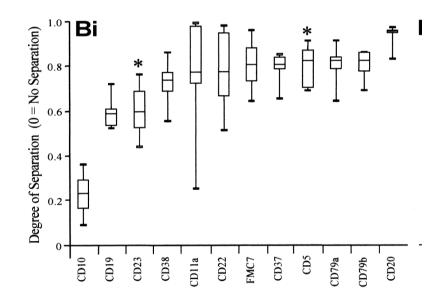

METHODS, REAGENTS AND KITS FOR (54)DETECTING MINIMAL RESIDUAL DISEASE

1E) CD200

• CD200

- Expressed by normal B-cells and most cases of CLL
- One of the key markers for differentiating CLL vs. MCL
- Not expressed by T-cells → if included in the MRD panel, CD3 might not be required
- ? Required or recommended


Expression pattern of key diagnostic markers in different B-lymphoproliferative disorders


1F) CD20 or CD22...or both?

- CD20 vs. CD22
 - Expression level is highly correlated and using both markers together is probably not required
 - CD20 is not detectable during treatment with anti-CD20 therapeutic antibodies...but normal mature B-cells are also absent
 - Discrimination between normal B-cells and CLL cells is (much) better with CD20
- ? Required or recommended

Inclusion of CD22 (or CD3) is not required if the ERIC 6 core markers are used

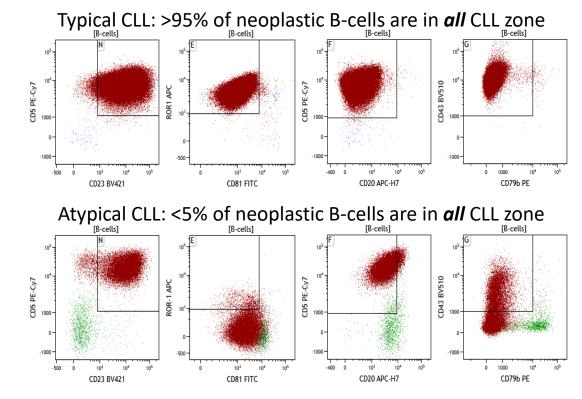
CD20 is the best marker for discriminating CLL vs. normal mature B-cells

1) Cellular analysis: technical questions

	Yes	Νο	Not sure
Q1) The core marker panel should be updated (slides 2-5)			

Free text comment:

Additional markers which should be considered for the core panel	Required	Recommended	Not informative	Not sure
Q2) ROR1 (slide 7)				
Q3) CD3 (slide 8)				
Q4) CD27 (slide 9)				
Q5) CD200 (slide 10)				

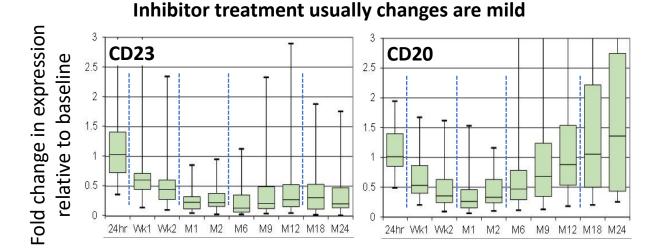

Free text comment (especially other markers for which evidence should be considered)

CD20 vs. CD22	CD20 is more informative	Both CD22 & CD20 are required	Either CD22 or CD20 is suitable	Not sure
Q6) CD20 vs. CD22 (slide 11)				

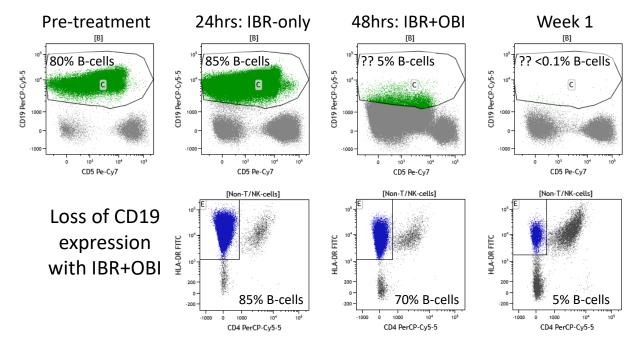
Free text comment:

2A/B) Analysis of atypical cases and CD19+CD5+ B-cell clonality assessment

- MRD analysis strategies with fixed/stringent gates may exclude a (high) proportion of neoplastic cells in atypical cases
- CD19/CD5/κ/λ thresholds that have >99% positive predictive value (PPV) for the presence of residual disease have been identified
- Cross-checking the MRD results against CD19/CD5 clonality assessment can improve detection in atypical cases, which can be particularly helpful if the pre-treatment phenotype is not known.
- If clonality is performed separately to MRD analysis it can also identify sample-switch errors
- Should CD19/CD5 clonality assessment be required as part of the MRD assessment, or recommended ?
- ? Should pre-treatment analysis be required for clinical trials, or recommended ?


Referred "atypical" CLL cases usually have mod/strong CD5 – otherwise they would be classed as a different type of B-LPD

Parameter	Training set (n=392): 100% PPV threshold	PPV in validation set (n=392)
CD19+ K:L ratio	<0.04:1 or >61:1	98.8% (n=85)
CD5+ % of B-cells	>82%	100% (n=144)
CD19+CD5+ K:L ratio	<0.05:1 or >32:1	100% (n=128)
%slg- of CD19+CD5+	>54%	100% (n=40)

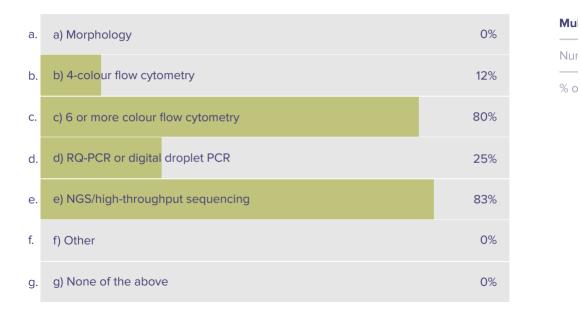

Leukemia. 2013 Jan;27(1):142-9. doi: 10.1038/leu.2012.216.

2C) Phenotype change with inhibitor Rx

- BCR-pathway inhibitors affect expression of a number of molecules
 - CD23 expression is substantially decreased for the duration of treatment
 - CD20 expression is decreased for the first 6-12 months of treatment
- Occasionally there is a substantial change in expression profile
- ? Should an early assessment be recommended to check for phenotype shift (in clinical trials) ?

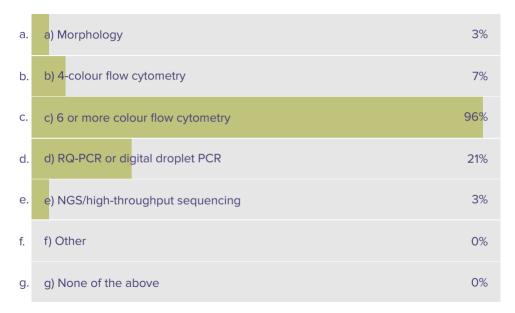
Inhibitor treatment occasionally causes substantial phenotype shift

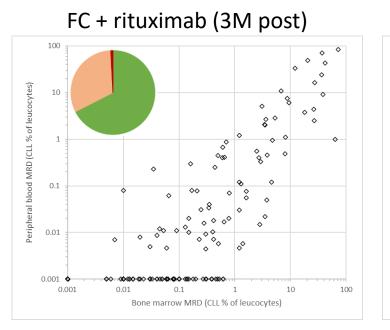
2) ERIC should seek evidence and/or consensus on the following topics to include in any update on updated cellular MRD guidance:

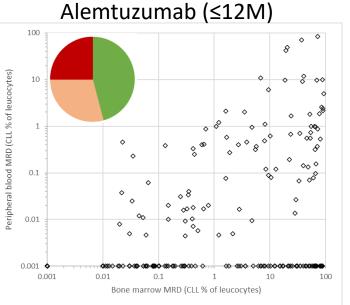

	Required	Recommended	Not informative	Not sure
2A) CD19/CD5 clonality assessment in addition to any MRD panel (slide 13)				
2B) Pre-treatment immunophenotyping (slide 13)				
2C) Early evaluation during novel treatment to check for phenotype shift (slide 14)				

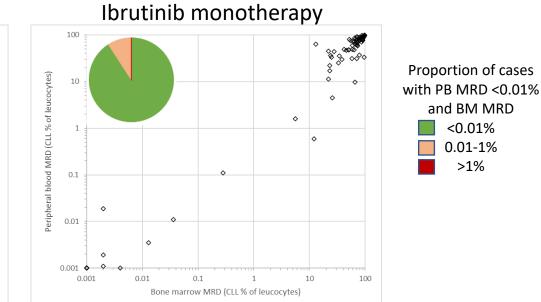
Free text comment (for each):

ERIC 2020: application of MRD


10. Q10. Which technologies are appropriate for monitoring MRD in clinical trials?

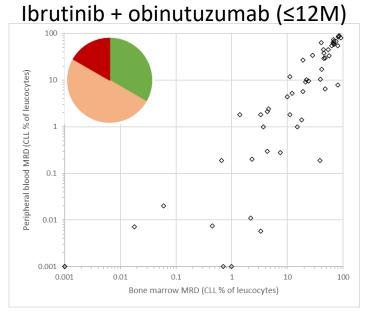

1. Q1. I would like to use MRD to:


a.	a) Assess response and predict outcome for clinic patients	65%
b.	b) Determine duration of treatment for clinic patients	44%
c.	c) Monitor patients in remission after treatment	62%
d.	d) Improve drug development in clinical trials	31%
e.	e) Other application	3%
f.	f) None of the above	0%

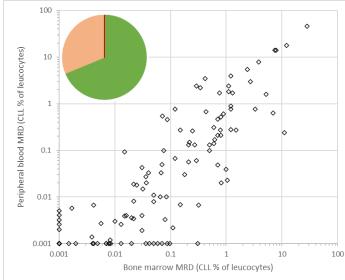

4. Q4. Which technologies are appropriate for monitoring MRD in the clinic?

PB vs. BM MRD: impact of different treatments

obinutuzumab


FCR

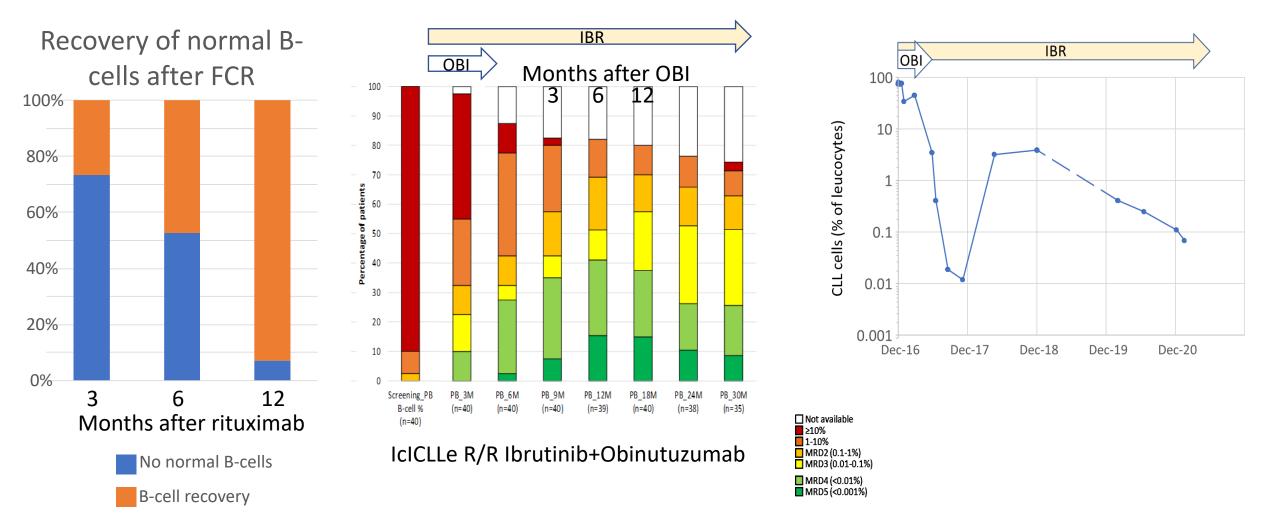
Alemtuzumab


Bone marrow MRD (CLL % of leucocytes)
Treatment	Median log difference (range)
Ibrutinib	0.0 (-0.9 to 1.3)
Ibrutinib + venetoclax	0.2 (-0.9 to 1.7)
Ibrutinib +	0.3 (-0.2 to 2.8)

0.7 (-0.9 to 2.4)

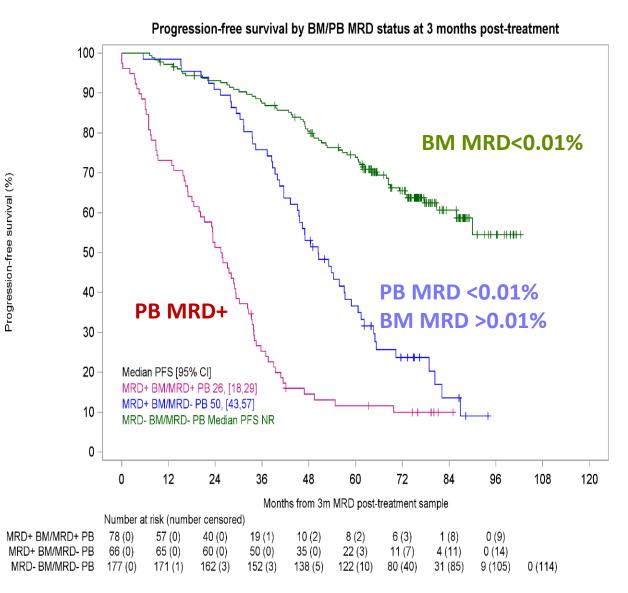
1.2 (-1.3 to 3.3)

Ibrutinib + venetoclax


PB vs. BM: anti-CD20 therapeutic antibodies

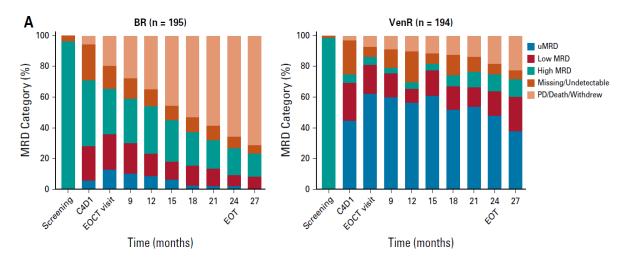
• CLL14 Venetoclax-obinutuzumab

PB 76% vs. BM 57%

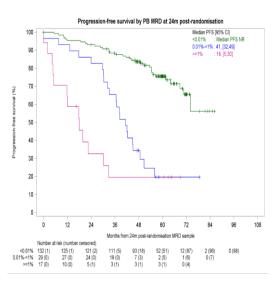

Chlorambucil-obinutuzumab

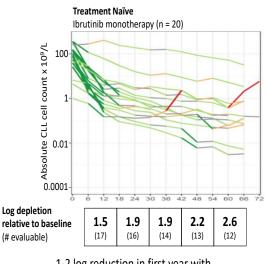
PB 35% vs. BM 17%

3A) PB vs. BM MRD assessment


- Bone marrow may be the most informative compartment for MRD analysis but is not appropriate for many applications.
- Treatment-related differences between PB and BM MRD are largely known:
 - Steady state: PB MRD ~0.2log lower than BM
 - Therapeutic antibody: PB MRD **0.5-2 log** lower than BM up to 1 year after last dose
 - BCRi: PB MRD levels equivalent to BM
 - BCL2i: PB MRD ~0.5log lower than BM
- ? Should the updated guidance seek consensus on which applications can be achieved using PB analysis only and which applications require bone marrow MRD assessment

ADMIRE/ARCTIC trials: FCR for treatment-naïve CLL patients


3B) Appropriate timepoints for MRD assessment


- After end of duration treatment, PFS follows as similar pattern for high (>1%) vs. intermediate (0.01 – 1%) vs <0.01% MRD independent of treatment type or time since end of treatment. Patients with <1% PB disease or highly unlikely to show disease progression in the subsequent year.
- BCRi shows ongoing stable or gradually depleting disease unless resistant disease develops
- BCL2i assessment at 6 12 months may be informative to guide treatment
- ? Is there sufficient evidence / consensus to recommend optimal timepoints for MRD assessment ?

1. Seymour JF, et al. N Engl J Med 2018; 378:1107–1120 (incl. suppl.);
2. Kater AP and Seymour JF, et al. J Clin Oncol 2018; DOI: 10.1200/JCO.18.01580.

PB MRD 18 months after end of FCR

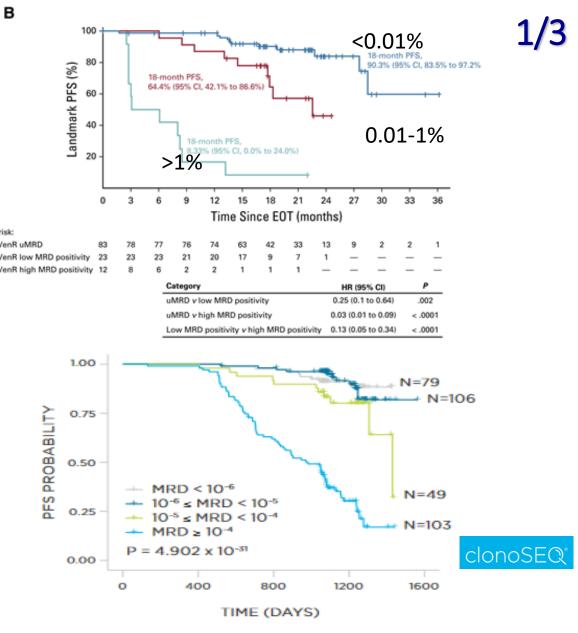
1-2 log reduction in first year with gradual depletion (~0.2log/year) after

3) ERIC should seek evidence and/or consensus on the following topics to include in any update on updated general MRD guidance:

The updated guidance should include:	Yes	Νο	Not sure
3A) Guidance on when to use peripheral blood vs. bone marrow (slide 19)			
3B) Guidance on MRD timepoints should be included (slide 20)			

Free text comment (for each):

3C) Reporting MRD results: individual laboratory results (current guidance)


Current guidance: the report should indicate the limit of quantification, (defined as 100* 50 / total number of cells analysed) for cases with detectable residual disease, and the limit of detection for cases with no detectable disease (defined as 100* 20/ total number of cells analysed, assuming the laboratory has demonstrated an appropriate limit of blank).

Examples

- If there are 80 CLL events detected in a total of 1 million total cells, the report would state "CLL cells = 0.0080% (limit of quantitation 0.0050%)".
- If CLL cells are not detectable the report should state "CLL cells not detected (limit of detection 0.0020%).
- If CLL cells are detected at a level intermediate to the limit of detection and quantitation, e.g. 40 CLL events in 1 million total cells, the report should state "CLL cells detected below the quantitative range (0.0020 0.0050%).
- New proposal: the quantitative point estimate, LoD and LoQ should be reported in all cases.
- Additional questions:
 - Should other parameters be provided, e.g. confidence interval, total #cells or leucocytes?
 - Can we generalise the approach (?? to all disorders)

3D) Summarising MRD results

- 0.01% / 10⁻⁴ is the IWCLL threshold for reporting detectable vs. undetectable disease but
 - Current technologies can detect disease below this level
 - MRD is a continuous variable: both lower and higher thresholds are also informative
- LoD is dependent both on the assay and sample characteristics
 - Example: sample with 0.005% CLL (5 CLL cells per 100 thousand leucocytes) tested using IGH-HTS.
 - Assay detection limit is 1/million (10^6) but there was only sufficient DNA to report at the 1/100 thousand (10^5) level
 - How to report? MRD negative (or undetectable) at iwCLL 0.01% threshold, detectable at MRD5, not assessable at MRD6?

https://www.clonoseq.com/wp-content/uploads/PM-US-cSEQ-0353_clonoSEQ_ClinicalData_Branded_CLL.pdf

3D) Summarising MRD results: lessons from CML

- Use of binary terms such as positive vs. negative or detectable vs. undetectable are only meaningful in the context of a stated threshold or detection limit.
- A readily-identifiable abbreviation for the threshold is helpful

REVIEW

Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia

NCP Cross^{1,2}, HE White^{1,2}, D Colomer³, H Ehrencrona⁴, L Foroni⁵, E Gottardi⁶, T Lange⁷, T Lion⁸, K Machova Polakova⁹, S Dulucq¹⁰, G Martinelli¹¹, E Oppliger Leibundgut¹², N Pallisgaard¹³, G Barbany¹⁴, T Sacha¹⁵, R Talmaci¹⁶, B Izzo¹⁷, G Saglio⁶, F Pane^{17,18}, MC Müller¹⁹ and A Hochhaus²⁰

- MR⁴ (≥4-log reduction from IRIS baseline) = either (i) detectable disease ≤ 0.01% BCR-ABL^{IS} or (ii) undetectable disease in cDNA with 10 000–31 999 ABL1 transcripts or 24 000–76 999 GUSB transcripts.
- MR^{4.5} (≥4.5-log reduction from IRIS baseline) = either (i) detectable disease ≤ 0.0032% BCR-ABL^{IS} or (ii) undetectable disease in cDNA with 32 000–99 999 ABL1 transcripts or 77 000–239 999 GUSB transcripts.
- MR⁵ (≥5-log reduction from IRIS baseline) = either (i) detectable disease ≤ 0.001% BCR-ABL^{IS} or (ii) undetectable disease in cDNA with ≥ 100 000 ABL1 transcripts ≥ 240 000 GUSB transcripts.

3D) Reporting MRD results: summarising

- Use of binary terms such as positive vs. negative or **detectable vs. undetectable** should only ever be used in the context of a stated **threshold or detection limit**.
- Detection limit depends on both the **assay and the individual sample**: if the sample is insufficiently cellular the assay detection limit may be different to the assay sensitivity.
- Expert consensus review propose to use the terminology "MRD3", "MRD4", "MRD5" etc to denote a sample containing less than 1 neoplastic cells per thousand, ten thousand, or hundred thousand normal cells respectively (Wierda et al, Leukemia. 2021 Jun 24. doi: 10.1038/s41375-021-01241-1)
- **Sub-classifying** as detectable or undetectable will depend on the assay and sample characteristics and is **secondary to the MRD threshold**.
 - A sample classified as MRD4 using an assay with a detection limit of 10-4 may have 0.005% MRD, or a much lower level of residual disease, e.g. less than 1 in a million or even no disease.
 - A sample classified as MRD4 using an assay with a detection limit of 10⁻⁶ would have a level of residual disease between 0.001-0.01% by definition if sample quality criteria were met.
- This approach could be used with any directly quantitative validated method that has a defined limit of detection (sensitivity) and limit of quantification. Any directly quantitative approach, including assays using patient-specific probes such as RQ-ASO-IG-PCR, must determine these values during the evaluation of each probe-set.

Summarising MRD results: appropriate for any validated quantitative method and potentially applicable to many quasi-quantitative assays

MRD classification	Neoplastic cells / total normal cells	Neoplastic cells % of total cells	Scientific notation	Cell required for flow cytometry	Cells (DNA) required for molecular analysis
MRD3	<1/ thousand	<0.1%	10E-3 (10 ⁻³)	>20 thousand	>3 thousand (0.02µg DNA)
MRD4	<1/ 10 thousand	<0.01%	10E-4 (10 ⁻⁴)	>200 thousand	>30 thousand (0.2µg DNA)
MRD5	<1/ 100 thousand	<0.001%	10E-5 (10 ⁻⁵)	>2 million	>300 thousand (2µg DNA)
MRD6	<1/ million	<0.0001%	10E-6 (10 ⁻⁶)	>20 million	>3 million (20µg DNA)
MRD7	<1/ 10 million	<0.00001%	10E-7 (10 ⁻⁷)	>200 million	>30 million (120µg DNA)

Criteria for reporting individual samples and summarising MRD status independent of assay type (? also independent of disease type)

	Yes	Νο	Not sure
3C) The proposed criteria for reporting individual samples are acceptable (slide 22)			
3D) The proposed criteria for reporting categorical MRD status are acceptable (slide 23-26)			

Free text comment (for each):

Acknowledgements

Leukemia (2007) 21, 956-964 © 2007 Nature Publishing Group All rights reserved 0887-6924/07 \$30.00 www.nature.com/leu

ORIGINAL ARTICLE

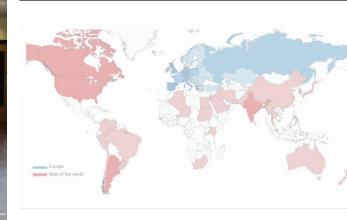
International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia

AC Rawstron¹, N Villamor^{2,3}, M Ritgen⁴, S Böttcher⁴, P Ghia⁵, JL Zehnder⁶, G Lozanski⁷, D Colomer^{2,3}, C Moreno^{2,3}, M Geuna⁸, PAS Evans¹, Y Natkunam⁶, SE Coutre⁶, ED Avery⁹, LZ Rassenti⁹, TJ Kipps⁹, F Caligaris-Cappio⁵, M Kneba⁴, JC Byrd⁷, MJ Hallek¹⁰,

E Montserrat^{2,3} and P Hillmen¹

© 2013 Macmillan Publishers Limited Leukemia (2013) **27**, 142–149 All rights reserved 0887-6924/13 www.nature.com/leu

ORIGINAL ARTICLE


npg

Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL

AC Rawstron^{1,2}, S Böttcher³, R Letestu^{4,5}, N Villamor⁶, C Fazi⁷, H Kartsios¹, RM de Tute¹, J Shingles¹, M Ritgen³, C Moreno⁸, K Lin⁹, AR Pettitt⁹, M Kneba³, E Montserrat⁶, F Cymbalista^{4,5}, M Hallek¹⁰, P Hillmen¹¹ and P Ghia⁷ on behalf of the European Research Initiative in CLL (ERIC)

Leukemia (2016) **30,** 929–936 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16 www.nature.com/leu

ORIGINAL ARTICLE

A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study

AC Rawstron¹, C Fazi², A Agathangelidis², N Villamor³, R Letestu⁴, J Nomdedeu⁵, C Palacio⁶, O Stehlikova⁷, K-A Kreuzer⁸, S Liptrot⁹, D O'Brien⁹, RM de Tute¹, I Marinov¹⁰, M Hauwel¹¹, M Spacek¹², J Dobber¹³, AP Kater¹³, P Gambell¹⁴, A Soosapilla¹⁵, G Lozanski¹⁶, G Brachtl^{17,18}, K Lin¹⁹, J Boysen²⁰, C Hanson²⁰, JL Jorgensen²¹, M Stetler-Stevenson²², C Yuan²², HE Broome²³, L Rassenti²³, F Craig²⁴, J Delgado³, C Moreno⁵, F Bosch⁶, A Egle¹⁷, M Doubek⁷, S Pospisilova⁷, S Mulligan²⁵, D Westerman¹⁴, CM Sanders²⁶, R Emerson²⁶, HS Robins²⁶, I Kirsch²⁶, T Shanafelt²⁰, A Pettitt¹⁹, TJ Kipps²³, WG Wierda²¹, F Cymbalista⁴, M Hallek⁸, P Hillmen²⁷, E Montserrat³, and P Ghia^{2,28} on behalf of ERIC (European Research Initiative on CLL)

european research initiative on CLL

