

Realizing Precision Medicine in CLL facts, challenges and considerations

Kostas Stamatopoulos

Institute of Applied Biosciences CERTH, Thessaloniki, Greece

Disclosures

Honoraria Janssen, Gilead, Novartis, Abbvie

Scientific Advisory Board Janssen, Gilead

Research funding Janssen, Gilead, Abbvie

CLL treatment evolution

1960 – 2013 only 5 drugs

CLL treatment evolution

1960 – 2013 only 5 drugs

2014 – 2019 many new options

drastic changes in the overall treatment strategy

the challenge

which medicine?
which combination?
which patient?
which diagnostics?

CLL treatment in 2019 – considerations

age and physical status

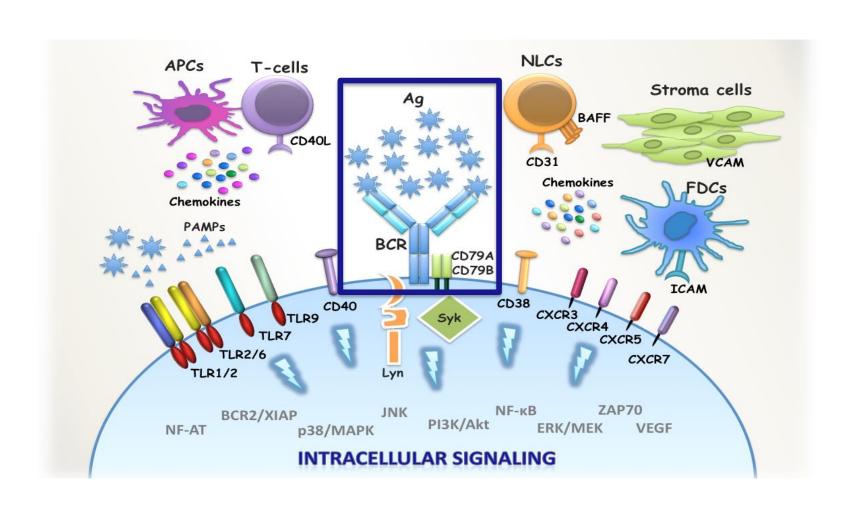
patient preferences

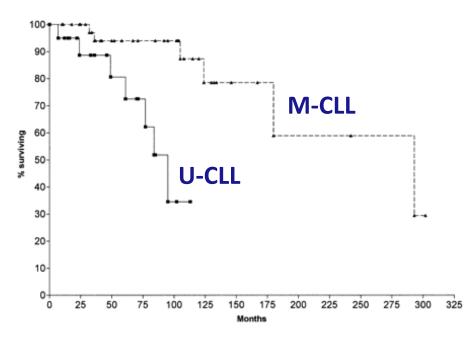
biological background

Guidelines for diagnosis, indications for treatment, response assessment and supportive management of chronic lymphocytic leukemia

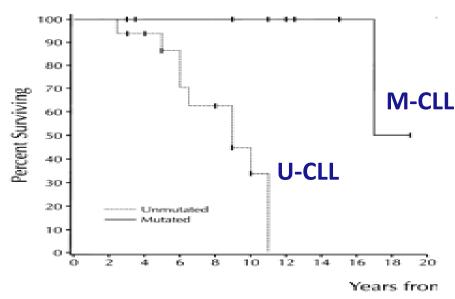
Michael Hallek, Bruce D. Cheson, Daniel Catovsky, Federico Caligaris-Cappio, Guillermo Dighiero, Hartmut Döhner, Peter Hillmen, Michael Keating, Emili Montserrat, Nicholas Chiorazzi, Stephan Stilgenbauer, Kanti R. Rai, John C. Byrd, Barbara Eichhorst, Susan O'Brien, Tadeusz Robak, John F. Seymour and Thomas J. Kipps

	General practice	Clinical trial
FISH for del(13q), del(11q), del(17p), add(12)	Always	Always
TP53 mutations	Always	Always
IG genes	Always	Always

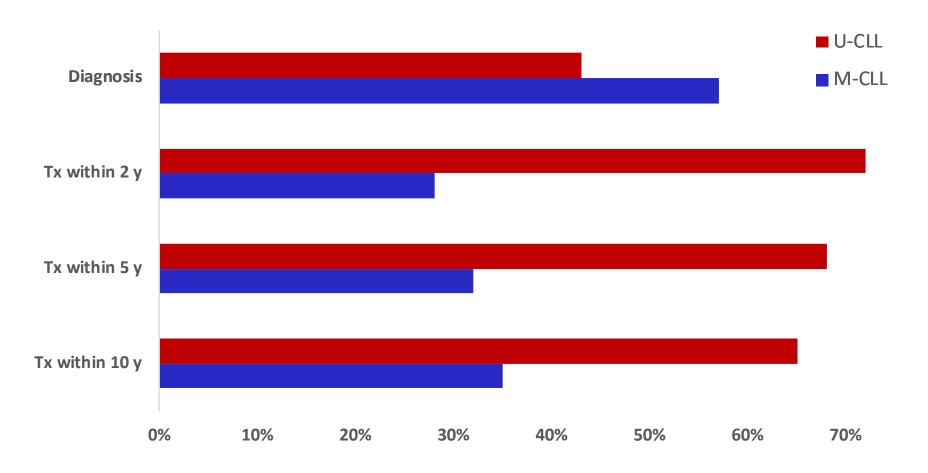

it's not only about TP53


the genomic background of CLL is heterogeneous

no single lesion accounts for more than 10-15% of cases


B cell receptor immunoglobuling a unique biomarker for **all CLL**

CLL - better with mutated IG receptors



Hamblin et al. Blood 1999;94:1848-54

Damle et al. Blood 1999; 94:1840-7

U-CLL vs M-CLL let's see what happens

Agathangelidis et al. Blood 2012; 119(19):4467-75 Baliakas et al. Lancet Haematol 2014 ;1(2):e74-84

BcR IG the ultimate driver in CLL

CLL treatment in 2019

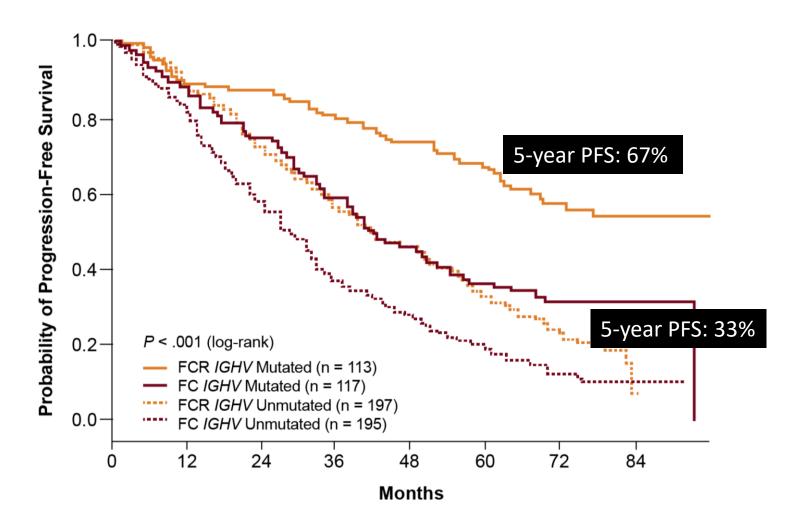
facts and considerations

frontline paradigms chemoimmunotherapy

biological agents

only a **minority** of CLL patients are eligible for intensive chemoimmunotherapy

10-12% of the annual symptomatic population of CLL patients are del17p/TP53 mutated


no place for chemoimmunotherapy

60% of the annual symptomatic population of CLL patients in the EU are considered elderly or younger with a major comorbidity

no place for chemoimmunotherapy

TP53 wildtype CLL fit patients

FCR: maximum benefit for IG-mutated FCR: limited benefit for IG-unmutated

FCR is a valid option for a **small minority** of fit CLL patients with low risk disease

First-line CIT options for unfit patients

Study	Regimen	Median PFS (months)
Hillmen P et al, Lancet, 2015 Phase III	Ofatumumab- Chlorambucil	22.4
Goede V et al, NEJM, 2014 Phase III	Rituximab-Chlorambucil Obinutuzumab-Chlorambucil	16.3 26.7

not optimal

frontline paradigms in 2019

biological agents

ibrutinib

venetoclax

E1912: ECOG-E1912

ibrutinib plus rituximab versus FCR in patients with untreated CLL aged 70 years or younger

E1912: ECOG-E1912 | study design

Stratified by age (< vs \ge 60 yrs), ECOG PS (0/1 vs 2), stage (III-IV vs I-II), del(11q22.3) vs other

Patients with **previously untreated CLL** requiring
treatment per IWCLL 2008,
aged ≤ 70 yrs, ECOG PS 0-2,
CrCl > 40 mL/min, ability to
tolerate FCR, **no del(17p) by FISH** (N = 529)

Ibrutinib 420 mg PO QD for cycles 1-7 +

Rituximab 50 mg/m² IV on Day 1, cycle 2, then 325
mg/mg² on Day 2, cycle 2, then 500 mg/m² on Day 1, cycles
3-7
(n = 354)

Fludarabine 25 mg/m² IV on Days 1-3 for cycles 1-6 +

Cyclophosphamide 250 mg/m² IV on Days 1-3 for cycles
1-6 +

Rituximab 50 mg/m² IV on Day 1, cycle 1, then 325 mg/mg²
on Day 2, cycle 1, then 500 mg/m² on Day 1, cycles 2-6
(n = 175)

28-day cycles.

Primary endpoint: PFS

Secondary endpoints: OS, safety

Ibrutinib

maintenance until PD

PFS significantly prolonged with ibrutinib + R vs FCR

	ITT Population		Eligible Population	
PFS Outcome	Ibrutinib + R FCR		Ibrutinib + R	FCR
No. events/cases	37/354	40/175	33/332	39/166
HR (95% CI)	0.35 (0.22-0.50)		0.32 (0.20-0.51)	
1-sided P value	<.00001		< .00	0001

Significant PFS benefit with ibrutinib + R vs FCR in U-CLL, trend toward PFS improvement in M-CLL

PFS Outcome by IGHV	U-CLL		M-CLL	
Status	Ibrutinib + R	FCR	Ibrutinib + R	FCR
No. events/cases	20/210	21/71	8/70	6/44
HR (95% CI)	0.26 (0.14	4-0.50)	0.44 (0.14	-1.36)
1-sided P value	< .000	001	.07	

U-CLL: unmutated IGHV genes | M-CLL: mutated IGHV genes

The NEW ENGLAND JOURNAL of MEDICINE

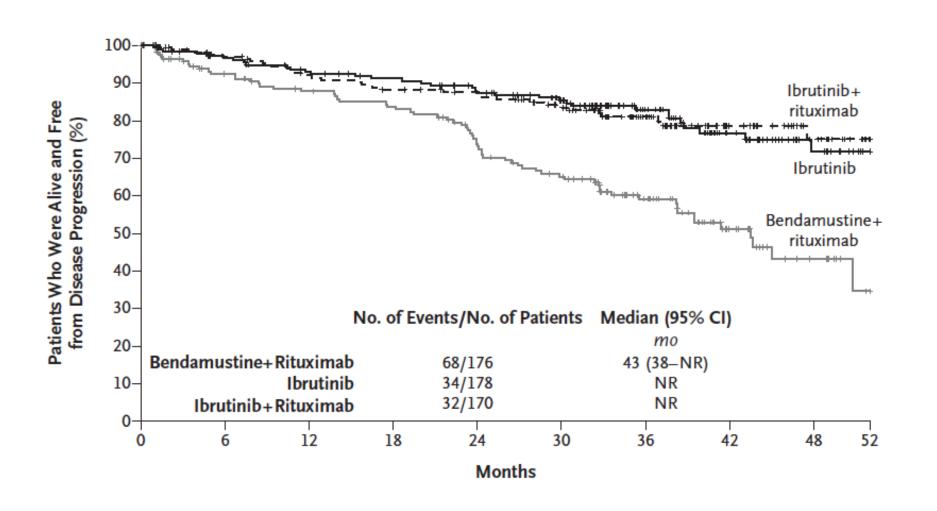
ORIGINAL ARTICLE

Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL

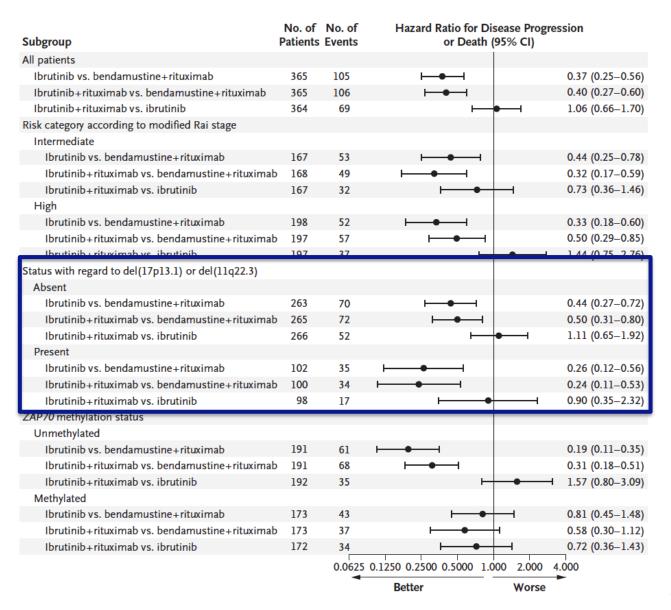
J.A. Woyach, A.S. Ruppert, N.A. Heerema, W. Zhao, A.M. Booth, W. Ding, N.L. Bartlett, D.M. Brander, P.M. Barr, K.A. Rogers, S.A. Parikh, S. Coutre, A. Hurria,* J.R. Brown, G. Lozanski, J.S. Blachly, H.G. Ozer, B. Major-Elechi, B. Fruth, S. Nattam, R.A. Larson, H. Erba, M. Litzow, C. Owen, C. Kuzma, J.S. Abramson, R.F. Little, S.E. Smith, R.M. Stone, S.J. Mandrekar, and J.C. Byrd

ALLIANCE A041202: Study Design

Multicenter, randomized, double-blind phase III study (data cutoff: October 4, 2018)


*28-day cycles.

Stratified by Rai stage (high vs intermediate risk), del(11q22.3) or del(17p13.1) (presence vs absence), ZAP-70 methylation ($\langle vs \geq 20\% \rangle$)


Ibrutinib 420 mg QD Until **Untreated patients** with CLL PD(n = 182)meeting IWCLL 2008 criteria for tx initiation; aged ≥ 65 yrs; EGOG Ibrutinib 420 mg QD + *Ibrutinib* PS 0-2; ANC ≥ 1000 unless due to **Rituximab** 375 mg/m² wkly x 4 wks starting cycle 2 Day 1; cycles 3-6 Day 1³ until PD BM involvement; PLT ≥ 30; CrCl_{CG} (n = 182) \geq 40; AST/ALT \leq 2.5 x ULN; Crossover to no heparin or warfarin Bendamustine 90 mg/m² on Days 1, 2 + ibrutinib w/n (N = 547)Rituximab 375 mg/m² on cycle 1 Day 1; 500 mg/m² on cycles 2-6 Day 1* 1 yr of PD (n = 183)allowed

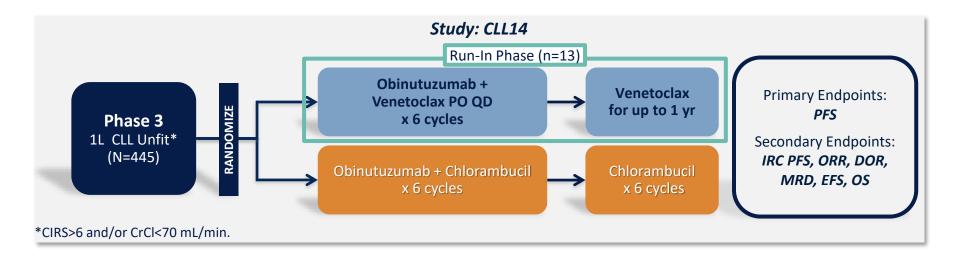
Primary endpoint: PFS

PFS significantly better for ibrutinib vs BR and ibrutinib + R vs BR no difference for ibrutinib + R vs ibrutinib

PFS significantly better for ibrutinib vs BR and ibrutinib + R vs BR no difference for ibrutinib + R vs ibrutinib

ibrutinib

venetoclax


The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

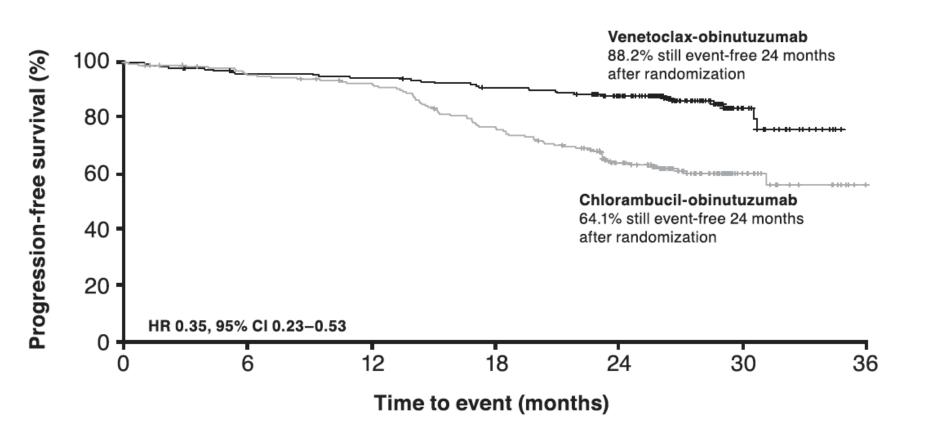
Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions

K. Fischer, O. Al-Sawaf, J. Bahlo, A.-M. Fink, M. Tandon, M. Dixon, S. Robrecht,
S. Warburton, K. Humphrey, O. Samoylova, A.M. Liberati, J. Pinilla-Ibarz, S. Opat,
L. Sivcheva, K. Le Dû, L.M. Fogliatto, C.U. Niemann, R. Weinkove, S. Robinson,
T.J. Kipps, S. Boettcher, E. Tausch, R. Humerickhouse, B. Eichhorst,
C.-M. Wendtner, A.W. Langerak, K.-A. Kreuzer, M. Ritgen, V. Goede,
S. Stilgenbauer, M. Mobasher, and M. Hallek

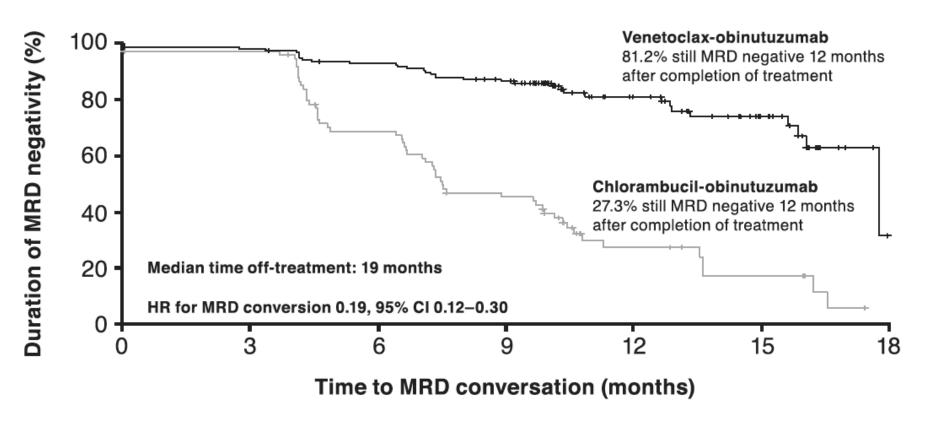
CLL14 – study design

Treatment Schedule		
Obinutuzumab (IV)		
Cycle 1:	100 mg D1; 900 mg D2; 1000 mg D8/D15	
Cycles 2-6:	1000 mg D1	
Venetoclax‡ (P	0)	
Cycle 1:	20 mg QD D22-28	
Cycle 2:	50 mg QD D1-7; 100 mg QD D8-14; 200 mg QD D15-21; 400 mg QD D22-28	
Cycles 3-12:	400 mg QD D1-28	
[‡] Venetoclax ramp-up during course 1 and 2.		

Fixed-duration Ven+G induced deep

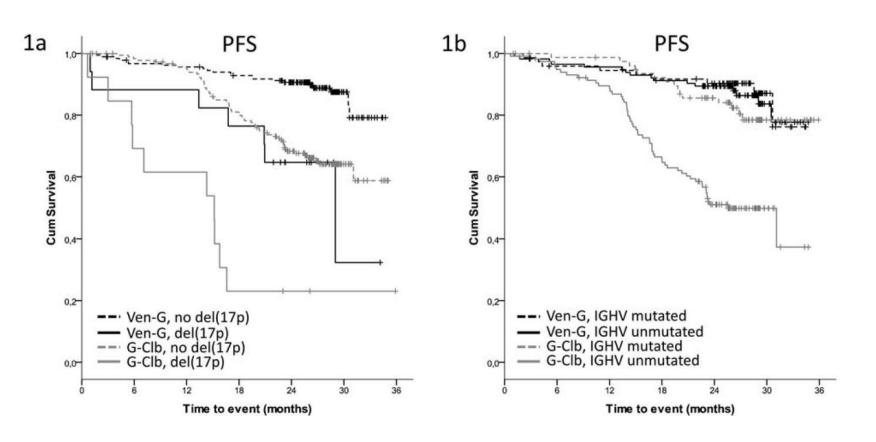

MRD-negativity rates in previously untreated pts with CLL and comorbidities

All pts (ITT) N	ClbG 216	VenG 216
MRD level, n (%)		
<10 ⁻⁶	9 (4.2)	67 (31.0)
≥10 ⁻⁶ and <10 ⁻⁵	33 (15.3)	75 (34.7)
≥10 ⁻⁵ and <10 ⁻⁴	32 (14.8)	26 (12.0)
≥10 ⁻⁴ and <10 ⁻²	50 (23.1)	13 (6.0)
≥10 ⁻²	62 (28.7)	10 (4.6)
No sample/not evaluable	30 (13.9)	25 (11.6)


MRD assessment: ASO-PCR, NGS

Fixed-duration Ven+G induced high

MRD-negativity rates in previously untreated pts with CLL and comorbidities



Fixed-duration Ven+G induced long-lasting MRD-negativity rates in previously untreated pts with CLL and comorbidities

Ven+G

only TP53 aberrations are adverse IGHV-unmutated experience particular benefit

a bright future for CLL

CLL treatment in 2019 – facts and goals

targeted agents, particularly ibrutinib and venetoclax, have improved our therapeutic armamentarium in a very impressive way

complete eradication of CLL is an obvious and desired endpoint

therapies leading to MRD negative remissions consistently result in a significant improvement in clinical outcome, including longer OS

precision medicine is becoming a reality in the clinical management of CLL

things in perspective

2015/08

Female age 63 yrs

Lymphocytosis, anemia, bulky lymph nodes

Flow-cytometry: typical CLL (score 5)

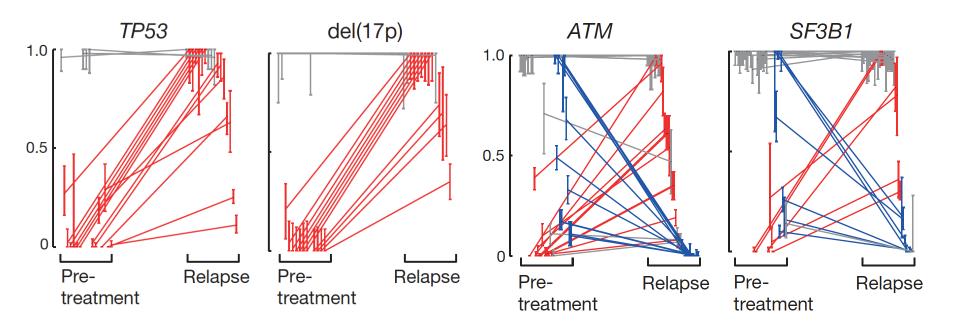
Clinical Stage: Binet C

FISH Monoallelic interstitial deletion of 13q14.3 (75%)

IGHV genes IGHV3-23 | 100% germline identity | U-CLL

TP53 gene analysis by Sanger Sequencing (2015-08-23) no pathogenic *TP53* variant was detected

ultra-high risk CLL


FISH

Monoallelic interstitial deletion of 13q14.3 (67%)

G ,	•		
Variant (Protein)	VAF	Depth	Interpretation
p.S215G	33%	3363	Pathogenic
TP53 gene analysis by NGS (2015-08-23)			
Variant (Protein)	VAE	Depth	Interpretation
p.S215G	6%	4352	Pathogenic

TP53 gene analysis by NGS (2017-01-26)

Chemo(immuno)therapy selects *TP53* mutant subclones

had you known in 2015, would you have treated with FCR?

we must and will change this!

join forces!

european research initiative on CLL

INAB | CERTH, Thessaloniki

Anastasia Hadzidimitriou

Andreas Agathangelidis

Maria Karypidou | Anna Vardi

Stamatia Laidou | Elsa Vlachonikola

Katerina Gemenetzi | Chryssi Galigalidou

Eva Minga | Fotis Psomopoulos

Karolinska Institute, Stockholm

Richard Rosenquist

San Raffaele, Milan

Paolo Ghia

Marta Muzio

Lesley-Ann Sutton

G. Papanicolaou Hospital, Thessaloniki

Niki Stavroyianni

Achilles Anagnostopoulos

Aliki Xochelli

Panagiotis Baliakas

Uppsala University

Pitié Salpêtrière, Paris

Fred Davi

IMGT, Montpellier

Marie-Paule Lefranc

Veronique Giudicelli

Nikea General Hospital, Athens

Chrysoula Belessi

Royal Bournemouth Hospital

Zadie Davis

David Oscier Erasmus MC, Rotterdam

Anton Langerak