

Research within ERIC: in the spirit of collaboration

Richard Rosenquist, MD, PhD Karolinska Institutet, Stockholm, Sweden

Joining forces

New tool box for diagnostics & research

The genomic landscape in CLL

What are the frequencies of gene mutations?

What gene mutations are clinically relevant?

ORIGINAL ARTICLE

Recurrent mutations refine prognosis in chronic lymphocytic leukemia

P Baliakas^{1,2}, A Hadzidimitriou^{1,3}, L-A Sutton¹, D Rossi⁴, E Minga³, N Villamor⁵, M Larrayoz⁶, J Kminkova⁷, A Agathangelidis^{8,9}, Z Davis¹⁰, E Tausch¹¹, E Stalika², B Kantorova⁷, L Mansouri¹, L Scarfò^{8,9}, D Cortese¹, V Navrkalova⁷, MJJ Rose-Zerilli⁶, KE Smedby¹², G Juliusson¹³, A Anagnostopoulos², AM Makris³, A Navarro⁵, J Delgado⁵, D Oscier¹⁰, C Belessi¹⁴, S Stilgenbauer¹¹, P Ghia^{8,9}, S Pospisilova⁷, G Gaidano⁴, E Campo⁵, JC Strefford^{6,15}, K Stamatopoulos^{1,2,3,15} and R Rosenquist^{1,15} on behalf of the European Research Initiative on CLL (ERIC)

Increased frequency in clinically aggressive cases

Concurrent genetic events

Prognostic impact of novel mutations

NOTCH1 (n=816+67)

SF3B1 (n=832+51)

ASKA IN

Karolinska

Baliakas et al. Leukemia 2015

Prognostic impact of novel mutations

Baliakas et al, Leukemia 2015

Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

Lesley-Ann Sutton,¹ Emma Young, ¹ Panagiotis Baliakas, ¹ Anastasia Hadzidimitriou,² Theodoros Moysiadis,² Karla Plevova,³ Davide Rossi,⁴ Jana Kminkova,³ Evangelia Stalika,² Lone Bredo Pedersen,⁵ Jitka Malcikova,³ Andreas Agathangelidis,^{6,7} Zadie Davis,⁸ Larry Mansouri,¹ Lydia Scarfò,^{6,7} Myriam Boudjoghra,⁹ Alba Navarro,¹⁰ Alice F. Muggen,¹¹ Xiao-Jie Yan,¹² Florence Nguyen-Khac,⁹ Marta Larrayoz,¹³ Panagiotis Panagiotidis,¹⁴ Nicholas Chiorazzi,¹² Carsten Utoft Niemann,⁵ Chrysoula Belessi,¹⁵ Elias Campo,¹⁰ Jonathan C. Strefford,¹³ Anton W. Langerak,¹¹ David Oscier,⁸ Gianluca Gaidano,⁴ Sarka Pospisilova,³ Frederic Davi,⁹ Paolo Ghia,^{6,7} Kostas Stamatopoulos,^{1,2,16*} Richard Rosenquist,^{1*} and on behalf of ERIC, the European Research Initiative on CLL

Haematologica 2016 Volume 101(8):959-967

Stereotyped B-cell receptors in CLL

Highly similar B-cell receptors

>30% of CLL patients Recognize similar epitopes More homogenous subgroups

Share clinical and biological profiles

Different subsets, distinct recurrent mutation profiles

Sutton et al, Haematologica 2016

Reappraising Immunoglobulin Repertoire Restrictions in Chronic Lymphocytic Leukemia: Focus on Major Stereotyped Subsets and Closely Related Satellites

Andreas Agathangelidis^{1*}, Anastasia Hadzidimitriou^{1*}, Eva Minga^{1*}, Lesley-Ann Sutton^{2*}, Eleftheria Polychronidou^{3*}, Tait D. Shanafelt⁴, Zadie Davis^{5*}, Xiao-Jie Yan⁶, Karla Plevova^{7*}, Myriam Boudjoghra^{8*}, Alba Navarro^{9*}, Davide Rossi¹⁰, Lone Bredo Pedersen^{11*}, Vasilis Bikos^{7*}, Panagiotis Baliakas^{2*}, Lydia Scarfò^{12*}, Mattias Mattsson^{2*}, Aliki Xochelli^{1*}, Paola Francia di Celle^{13*}, Krzysztof Giannopoulos^{14*}, Katrina Vanura^{15*}, Ludo Evers^{16*}, Silvio Veronese^{17*}, Monica Facco^{18*}, Panagiotis Moschonas^{3*}, Vojtech Bystry^{7*}, Teodora Karan-Djurasevic^{19*}, Maria Roumelioti^{20*}, Sonja Pavlovic^{19*}, Larry Mansouri^{2*}, Charles Chu^{6*}, Evangelia Stalika^{1*}, Veronique Giudicelli^{21*}, Panagiotis Panagiotidis^{20*}, Andrey Sudarikov^{22*}, Achilles Anagnostopoulos²³, Livio Trentin¹⁸, Mark Catherwood^{24*}, Marco Montillo²⁵, Niki Stavroyianni^{23*}, Gianluca Gaidano¹⁰, Elias Campo²⁶, Carsten Utoft Niemann¹¹, Anton W. Langerak^{27*}, Sarka Pospisilova^{7*}, Marie-Paule Lefranc^{21*}, Ulrich Jaeger¹⁵, Arnon Kater¹⁶, Christiane Pott^{28*}, Nicholas Chiorazzi⁶, David Oscier⁵, Diane F. Jelinek^{29*}, Stephan Stilgenbauer³⁰, Michael Hallek, MD³¹, Dimitrios Tzovaras^{3*}, Nikos Darzentas^{7*}, Chrysoula Belessi³², Frederic Davi^{8*}, Richard Rosenquist², Paolo Ghia¹² and Kostas Stamatopoulos¹

21,123 cases

What is the optimal strategy for gene panel analysis?

ERIC gene panel comparative study

european research initiative on CLL

Comparison of 3 targeted enrichment custom/pre-designed technologies

> 11 gene panel Full CDS or *hotspots only

> > Sutton et al, in preparation

#EGR2 and NFKBIE not included in Multiplicom design

Sutton et al, in preparation

Results: Multiplicom

Results: Illumina TruSeq

TP53 gene mutations

Sutton et al, in preparation

Results: HaloPlex

TP53 gene mutations

Sutton et al, in preparation

Combined TP53 Results: 3 methodologies

TP53 gene mutations

TP53 Results 1-10%

A mess!!! False positives or true low frequency variants?

Sutton et al, in preparation

MULTICENTER STUDY ON PROGNOSTIC AND PREDICTIVE IMPACT OF *TP53* VARIANTS

BELOW 10% VAF

More gene mutations detected...

Puente et al, Nature 2015 Landau et al, Nature 2015

Large-scale project on CLL gene mutations

- >20 centers, 4800 pts
- 10 genes, full clinical data required

Large-scale project on CLL gene mutations

n=3425

Sutton et al.

Relevance of genomic complexity?

Table 1. Baseline Evaluation of Patients with CLL

Diagnostic test	General practice	Clinical trial
Tests to establish the diagnosis		
Complete blood count and differential count	Always	Always
Immunophenotyping of peripheral blood lymphocytes	Always	Always
Assessment prior to treatment		
History and physical, performance status	Always	Always
Complete blood count and differential count	Always	Always
Marrow aspirate and biopsy	When clinically	Desirable
	indicated (unclear	
	cytopenia)	
Serum chemistry, serum immunoglobulin, and direct	Always	Always
antiglobulin test		
Chest radiograph	Always	Always
Infectious disease status	Always	Always
Additional tests prior to treatment		
Molecular cytogenetics (FISH) for del(13q), del(11q), del(17p), add(12) in peripheral blood lymphocytes	Always	Always
Conventional karyotyping in peripheral blood lymphocytes (with specific stimulation)	NGI*	Desirable
TP53 mutation	Always	Always
IGHV mutational status	Always	Always
Serum B2-microglobulin	Desirable	Always
CT scan of chest, abdomen, and pelvis	NGI	Desirable
MRI, PET scans	NGI	NGI
Abdominal ultrasound**	Possible	NGI

New iwCLL guidelines

Complex karyotype and clinical outcome

Juliusson et al, NEJM 1990

Thompson et al, Cancer 2015

Anderson et al, Blood 2017

LC: 3 abn IC: 4 abn HC: 5 or more abn

ERIC joining forces

n=5290

LC: 3 abn IC: 4 abn HC: 5 or more abn

How to bring order out of this?

European Expert Group on NGS Diagnostics in Lymphomas

- Reference group for NGS-based diagnostics
- Started 2015
- Associated with ERIC/EHA and EAHP
- Hematologists, hematopathologists and geneticists
- Aims:
 - Provide guidelines/recommendations
 - Dialogue with companies aiming for gene panel diagnostics
 - Workshops/symposiums

European Expert Group on NGS Diagnostics in Lymphomas

Elias Campo (Spain) Ming Du (UK) Gianluca Gaidano (Italy) Philippe Gaulard (France) Patricia Groenen (The Netherlands) Richard Rosenquist (Nordic countries) Andreas Rosenwald (Germany) Kostas Stamatopoulos (Greece)

hematopathologist molecular pathologist hematologist clinical scientist - molecular pathology clinical geneticist hematopathologist hematologist

Associated members: Paolo Ghia (ERIC) Andrew Wotherspoon (EAHP)

Great genetic heterogeneity but also common themes

Table 1A. Mutation frequencies in different B-cell lymphoma entities.

Pathway/cellular function	CLL	MCL	BL°	FL*	ABC-DLBCL*	GCB-DLBCL*	SMZL ⁴	HCL^s	WM*
B-cell receptor signaling CD79A/CD79B CARD11	<1% 1%	-	-	4% 10%	10-20% 10%	<5% 5%	- 4%	-	10%
Toll-like receptor signaling MYD88	3%		5%	-	20-30%	<5%	7%		>90%
NF-sc B signaling pathway TNFPAI3 BIRC3 TRAF3 NFKBIE	<3% <1% <2%	5-10% - 5%	- - -	10% - -	20% - - <5%	<5% - - <5%	8% 5% 5% 2%	- - -	40%* - -
Notch signaling NOTCH1 NOTCH2	10% <1%	10-15% 5%	-	-	-		6% 15-20%		-
Other signaling pathways BRAF CXCR4	3% <1%	-	-	-	4% <10%	-	<1% <1%	>90%	25%
Transcription factors ID3 TCF3 KLF2	- -	-	35-60% 10-25% -	-	- -	-	- 14%	-	:
DNA repair/genomic integrity ATM TP53 POT1	11% 5% 5%	40-50% 15-20% <3%	35%	5%	- 10-25% -	10-20%	<mark>6%</mark> 18% <1%	- -	- -
Epigenetic modifiers TET2 EZH2 IDH2 CREBBP	<1% <1% - <1%	<5% - -		- 10-20% - 50%	5-10% - 15-20%	5-10% 20% - 40%	3% <1% - 6%		-
EP300	<1%	-	2%	10-15%	<5%	<10%	4%	-	-

Clinical impact of recurrently mutated genes

Table 2. Categorization of gene mutations based on current evidence levels.

Category	Gene mutations
 Immediate impact on patient care 	TP53 mutations (exons 4-10) in CLL
2. Diagnostic impact	MYD88 ^{LIGEP} mutation in WM/LPL BRAF ^{VICCE} mutation in HCL <i>KLF2</i> mutations in SMZL <i>ID3</i> and <i>TCF3</i> mutations in BL <i>STAT3</i> mutations in LGLL <i>RHOA</i> , <i>TET2</i> , <i>IDH2</i> and DNMT3A mutations in AITL and other T _{FH} -derived PTCL
3. Prognostic impact	CLL: TP53, ATM, BIRC3, NFKBIE, NOTCH1, SF3B1 MCL: TP53, NOTCH1, NOTCH2 mutations SMZL: NOTCH2, TP53 mutations DLBCL: TP53 mutation & MYC translocation NKTCL: DDX3X mutations
4. Potential clinical impact in the near future	Therapy response to BcR inhibitors: WM: <i>MYD88</i> , <i>CXCR4</i> mutations DLBCL: <i>CD79B</i> mutations (responsive) <i>CARD11</i> , MYD88 mutations (non-responsive) Resistance to BcR inhibitors: BTK ^{CMIS} , PCLG2 mutations New inhibitors under development: <i>EZH2</i> , <i>SF3B1</i> & <i>NOTCH1</i>

Lymphoma NGS Gene Panel

Karolinska Institutet

- TruSight gene panel
- 43 genes included
- Low input (10-20 ng DNA), FFPE compatible

ATM, B2M, BIRC3, BRAF, BTK, CARD11, CD58, CD79A, CD79B, CIITA, CREBBP, CXCR4 (CD184), EGR2, EZH2, GNA13, ID3, IDH2, ITPKB, JAK3, KLF2, MAP2K1, MYD88, NFKBIE, NOTCH1, NOTCH2, PLCG1, PLCG2, POT1, RHOA, RPS15, RRAGC, SF3B1, SOCS1, STAT3, STAT5B, STAT6, TCF3, TET2, TNFAIP3, TNFRSF14, TP53, TRAF3, XPO1

Planned collaborative projects

Detection of resistance mutations

Multicenter study on ibrutinib resistance

- Deep sequencing of BTK and PLCG2
- Relapsing (n=22) and ٠ responding pts (n=34)
- 10/22 relapsed cases showed • BTK (10 pts) or PLCG2 (4 pts) mutations.

Progression and sampling

BTK mutated +/-PLCG2 mutated

Sutton, Bonfiglio, Scarfò et al

BTK mutations

Pt #	Gene	Exon	AA change	WT/MT codon	VAF, %
35RE	BTK	15	C481R	c.T1441C	36.57
19RE	BTK BTK	15 15	C481S C481S	c.T1441A c.G1442C	51.80 13.20
21RE	BTK	15	C481S	c.G1442C	29.30
13RE	BTK	15	C481S	c.G1442C	34.48
1RE	BTK	15	C481S	c.G1442C	4.37
4RE	BTK	15	C481S	c.G1442C	19.29
7RE	BTK	15	C481S	c.G1442C	35.22
16RE	BTK	15	C481S	c.G1442C	33.22
39RE	BTK	15	C481S	c.G1442C	8.04
33RE	BTK BTK	15 15	C481S C481S	c.G1442C c.T1441A	2.67 1.98

Sutton, Bonfiglio, Scarfò et al

Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia

by Panagiotis Baliakas, Theodoros Moysiadis, Anastasia Hadzidimitriou, Aliki Xochelli, Sabine Jeromin, Andreas Agathangelidis, Mattias Mattsson, Lesley-Ann Sutton, Eva Minga, Lydia Scarfò, Davide Rossi, Zadie Davis, Neus Villamor, Helen Parker, Jana Kotaskova, Evangelia Stalika, Karla Plevova, Larry Mansouri, Diego Cortese, Alba Navarro, Julio Delgado, Marta Larrayoz, Emma Young, Achilles Anagnostopoulos, Karin E Smedby, Gunnar Juliusson, Oonagh Sheehy, Mark Catherwood, Jonathan C Strefford, Niki Stavroyianni, Chrysoula Belessi, Sarka Pospisilova, David Oscier, Gianluca Gaidano, Elias Campo, Claudia Haferlach, Paolo Ghia, Richard Rosenquist, and Kostas Stamatopoulos

Haematologica 2018 [Epub ahead of print]

Karolinska

nstitutet

Tailored approaches based on immunogenetic features for refined prognostication in CLL

M-CLL

N=3015

U-CLL

We will continue!

