The use of microarrays in the diagnostic work-up of CLL

Anne-Marie van der Kevie-Kersemaekers
Clemens Mellink
Alexander Leeksma

Department of Clinical Genetics
Prognostic markers in CLL

Clinical markers
- *Clinical stage* (Rai / Binet staging systems)
- *Lymphocyte doubling time* (LDT)
- *Serum markers*

Protein and RNA expression markers
- *ZAP70 and CD38 expression levels*
- *Expression of miRNAs*

Genetic markers
- *IGHV gene mutation status*
- *Chromosomal aberrations*
- *Gene mutations*
Hierarchical model Döhner et al 2000

GOOD ⇔ del 13q > normal > tris 12 > del 11q > del 17p ⇔ **POOR**
Different techniques
Karyotyping
FISH: Recurrent chromosomal aberrations in CLL
(diagnosis/presentation)

<table>
<thead>
<tr>
<th>Aberration</th>
<th>Genes involved</th>
<th>Frequency</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>del(11)(q22-23)</td>
<td>ATM, MLL, FDX, BIRC3</td>
<td>15-20%</td>
<td>intermediate/poor</td>
</tr>
<tr>
<td>trisomy 12</td>
<td>?</td>
<td>10-20%</td>
<td>Intermediate/good</td>
</tr>
<tr>
<td>del(13)(q14)</td>
<td>RB1, DLEU2, miR-15A, miR-16-1</td>
<td>40-50%</td>
<td>good</td>
</tr>
<tr>
<td>del(17)(p13)</td>
<td>TP53</td>
<td>5-7%</td>
<td>poor</td>
</tr>
<tr>
<td>normal FISH</td>
<td></td>
<td>10-20%</td>
<td>intermediate</td>
</tr>
</tbody>
</table>

Döhner et al (2000)
Zenz et al (2011)
Microarray

Advantages:
- whole genome analysed
- small deletions and duplications detected
- CN-LOH
- Additional (recurrent) chromosome aberrations
- no dividing cells needed

Disadvantages
- no detection of balanced structural abnormalities
Microarray analysis

- Recurrent abnormalities
- 13q14 deletion type I or II
- Other abnormalities ≥ 5Mb
- CN-LOH ≥ 10Mb
- Clinical relevance (literature)
- Guidelines Schoumans et al
 (GENES, CHROMOSOMES & CANCER 2016, 55:480-491)

- Disclaimer
 Resolution microarray 7.4 kB
 Sensitivity 10-15%
Whole Genome
- Loss 11q22-23 (ATM)
- Loss 13q14-region
- Gain 2p25-p14

Agilent 180K oligo Platform
13 Kb median spacing
Small deletions and duplications: del 13q: 0.9 Mb

Agilent 400K oligo Platform
7.4 Kb median spacing
Small deletions and duplications: del 17p: 6,4 kb

Agilent 400K oligo Platform
7,4 Kb median spacing
CLL case Loss 13q14 - region

Agilent 180K oligo
Platform
13 Kb median spacing
Type I en Type II deletions 13q14-region

Type II deletions (large)
- 20% of CLL cases
- Elevated genomic complexity
- Contribute to CLL disease evolution (genomic destabilization)
 ➢ shorter OS? / TTT?

Type I deletions (small)
- 30% of CLL cases
- Good prognosis

Conclusion
The clinical course of CLL is accelerated in patients with large (type II) 13q14 deletions that (also) span the RB1 gene.
Copy Neutral Loss of Heterozygosity:
17p, no deletion, mutation P53 present
Additional (recurrent) chromosome aberrations by microarray analysis in CLL

- Gain 2p (poor)
- Deletion 6q (intermediate)
- Gain 8q (poor)

Progressive disease

More advanced stage CLL

... So far, not really independent prognostic (clinical) value ...

- Other abnormalities
- **Complex array profile**!
Complex karyotype and OS

A. OS according to FISH for all patients
B. OS according to the presence or absence of a complex metaphase karyotype

Thompsom et al 2015
Overview of cohort

<table>
<thead>
<tr>
<th>N=2423</th>
<th>N, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1504, 75%</td>
</tr>
<tr>
<td>Female</td>
<td>707, 25%</td>
</tr>
<tr>
<td>Median age diagnosis</td>
<td></td>
</tr>
<tr>
<td><55</td>
<td>379/1595, 24%</td>
</tr>
<tr>
<td>>70</td>
<td>286/1595, 24%</td>
</tr>
<tr>
<td>MBL/SLL</td>
<td></td>
</tr>
<tr>
<td>Binet A</td>
<td>17/1449, 1%</td>
</tr>
<tr>
<td>Binet B</td>
<td>837/1449, 58%</td>
</tr>
<tr>
<td>Binet C</td>
<td>410/1449, 28%</td>
</tr>
<tr>
<td>Binet C</td>
<td>185/1449, 13%</td>
</tr>
<tr>
<td>M-CLL</td>
<td>544/1090, 50%</td>
</tr>
<tr>
<td>TP53abs</td>
<td>167/1359, 12%</td>
</tr>
<tr>
<td>del(11q)(22.3)</td>
<td>406/2386, 17%</td>
</tr>
<tr>
<td>trisomy 12</td>
<td>316/2386, 13%</td>
</tr>
<tr>
<td>del(13q)(14)</td>
<td>1235/2385, 52%</td>
</tr>
</tbody>
</table>

2423

CGH/SNP array results

[Link to ERIC: European Research Initiative on CLL]
Effects recurrent aberrations on survival

C: Survival Functions
- del(11q)
 - not present
 - present

P<0.001

D: Survival Functions
- trisomy 12

P=0.81

E: Survival Functions
- del(13q)

P<0.05

F: Survival Functions
- del(17p)

P<0.001
Effects IGHV and p53 mutation status

TP53abs=del(17p)(13.1)
and/or TP53mut
Overview of chromosomal aberrations

GC ≥3abs
24%

non-GC
76%
Overview of chromosomal aberrations

GC=genomic complexity (≥3 chromosomal aberrations)
Dissecting GC

Survival Functions

- non-GC
- GC=3
- GC=4
- GC≥5

P<0.001

Cum Survival vs. Follow up (years)
TP53mut

- **Survival Functions**
 - non-GC
 - GC ≥ 3

TP53wt

- **Survival Functions**
 - non-GC
 - GC ≥ 3

P-values

- **TP53mut**
 - GC ≥ 3: P < 0.01
 - GC ≥ 4: P < 0.01
 - GC ≥ 5: P < 0.001

- **TP53wt**
 - GC ≥ 3: P < 0.05
 - GC ≥ 4: P < 0.01
 - GC ≥ 5: P < 0.001
Multivariable analysis 'low' vs 'high' genomic complexity

<table>
<thead>
<tr>
<th>N=1570</th>
<th>HR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1.17</td>
<td>0.943-1.452</td>
<td>0.16</td>
</tr>
<tr>
<td>>70</td>
<td>2.633</td>
<td>2.075-3.341</td>
<td><0.001</td>
</tr>
<tr>
<td>BinetB/C</td>
<td>1.756</td>
<td>1.424-2.165</td>
<td><0.001</td>
</tr>
<tr>
<td>U-CLL</td>
<td>3.242</td>
<td>2.567-4.095</td>
<td><0.001</td>
</tr>
<tr>
<td>TP53abs</td>
<td>1.848</td>
<td>1.351-2.528</td>
<td><0.001</td>
</tr>
<tr>
<td>del(11q)</td>
<td>1.067</td>
<td>0.829-1.375</td>
<td>0.61</td>
</tr>
<tr>
<td>trisomy12</td>
<td>0.871</td>
<td>0.630-1.206</td>
<td>0.41</td>
</tr>
<tr>
<td>del(13q)</td>
<td>1.005</td>
<td>0.812-1.243</td>
<td>0.97</td>
</tr>
<tr>
<td>GC≥3</td>
<td>1.019</td>
<td>0.775-1.341</td>
<td>0.89</td>
</tr>
</tbody>
</table>

≥5 aberrations detected by arrays linked to high-risk disease independent of clinical stage, IGHV and TP53 status

<table>
<thead>
<tr>
<th>N=1570</th>
<th>HR</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1.165</td>
<td>0.939-1.446</td>
<td>0.17</td>
</tr>
<tr>
<td>>70</td>
<td>2.644</td>
<td>2.085-3.354</td>
<td><0.001</td>
</tr>
<tr>
<td>BinetB/C</td>
<td>1.723</td>
<td>1.398-2.123</td>
<td><0.001</td>
</tr>
<tr>
<td>U-CLL</td>
<td>3.219</td>
<td>2.550-4.064</td>
<td><0.001</td>
</tr>
<tr>
<td>TP53abs</td>
<td>1.624</td>
<td>1.207-2.184</td>
<td><0.01</td>
</tr>
<tr>
<td>del(11q)</td>
<td>1.008</td>
<td>0.788-1.288</td>
<td>0.95</td>
</tr>
<tr>
<td>trisomy12</td>
<td>0.899</td>
<td>0.650-1.242</td>
<td>0.52</td>
</tr>
<tr>
<td>del(13q)</td>
<td>0.978</td>
<td>0.793-1.206</td>
<td>0.83</td>
</tr>
<tr>
<td>GC≥5</td>
<td>1.672</td>
<td>1.177-2.377</td>
<td><0.01</td>
</tr>
</tbody>
</table>

GC ≥3 chromosomal aberrations

GC ≥5 chromosomal aberrations
Conclusions

1. Microarray in the diagnostic work-up of CLL

✓ Microarray can pick up the recurrent aberrations found in CLL
✓ Genomic complexity can also be defined by microarray

2. Effect genomic complexity (GC) in CLL

✓ Genomic complexity defined by array is a prognostic factor in CLL
✓ The presence of ≥5abs rather than >3abs is associated with the worst clinical outcome
✓ Genomic complexity is associated with worse clinical outcome even amongst cases harboring TP53abs
Acknowledgements

ERIC GC working group

Panagiotis Baliakas, Uppsala, Sweden
Richard Rosenquist, Stockholm, Sweden
Anh Nhi Tran, Stockholm, Sweden
Claudia Haferlach, München, Germany
Douka Vasiliki, Thessaloniki, Greece
Theodoros Moysiadis, Thessaloniki, Greece
Kostas Stamatopoulous, Thessaloniki, Greece
Maria Laura Blanco, Barcelona, Spain
Anna Puiggros, Barcelona, Spain
Blanca Espinet, Barcelona, Spain
Ana Eugenia Rodriguez, Salamanca, Spain
Jacqueline Schoumans, Lausanne, Switzerland
Sabine Franke, Liege, Belgium
Florence Nguyen-Khac, Paris, France
Karla Plevova, Brno, Czech Republic
Sarka Pospisilova, Brno, Czech Republic
Helen Parker, Southampton, Great Britain
Jonathan Strefford, Southampton, Great Britain
David Oscier, Bournemouth, Great Britain
Constantine Tam, Melbourne, Australia
Pino Poddighe, Amsterdam, the Netherlands
Eva van den Berg, Groningen, the Netherlands
Hidde Posthuma, Amsterdam, the Netherlands
Eric Eldering, Amsterdam, the Netherlands
Alexander Leeksma, Amsterdam, the Netherlands
Marian Stevens-Kroef, Nijmegen, the Netherlands
Clemens Mellink, Amsterdam, the Netherlands
Arnon Kater, Amsterdam, the Netherlands
Array procedure

DNA labeling
- patient DNA with Cy3
- reference DNA with Cy5

1:1 pooled hybridization on microarray slide

180,000 oligos
Array procedure \(\log_2 \) ratios

Ratio patient / reference
1 / 2 = 0.5 \(\rightarrow \) deletion (loss)

Ratio patient / reference
2 / 2 = 1 \(\rightarrow \) normal

Ratio patient / reference
3 / 2 = 1.5 \(\rightarrow \) duplication (gain)

Normal \(\log_2 (2/2) = \log_2 (1) = 0 \)

Loss \(\log_2 (1/2) = \log_2 (0.5) = -1 \)

Gain \(\log_2 (3/2) = \log_2 (1.5) = 0.58 \)